Skip to main content

Solusi Sistem Persamaan Linear

Sistem persamaan linier adalah salah satu persoalan bidang matematika yang banyak digunakan. Salah satu penyelesaian persamaan linier ini dengan menggunakan metode Operasi Baris Elementer (OBE) yang artinya membuat persamaan - persamaan awal pada sistem persamaan menjadi matriks lalu merubahnya menjadi matriks tereduksi. Terkadang dengan menggunakan cara penyelesaian OBE ini sangatlah panjang dan tidak efisien. Oleh karena itu, menyelesaikan persoalan masalah ini secara cepat, efektif dan efisien sangat dibutuhkan. Ada banyak macam cara dalam menyelesaikan masalah ini, yaitu dengan :
  • Aturan Cramer
  • Metode Invers Matriks
  • Eliminasi Gauss
  • Eliminasi Gauss Jordan 

  • Eliminasi Gauss Jordan 

Salah satu metode yang dapat digunakan untuk menyelesaikan sistem persamaan linier adalah metode eliminasi Gauss-Jordan. Metode ini diberi nama Gauss-Jordan untuk menghormati Carl Friedrich Gauss dan Wilhelm Jordan. Metode ini sebenarnya adalah modifikasi dari metode eliminasi Gauss, yang dijelaskan oleh Jordan di tahun 1887. Metode Gauss-Jordan ini menghasilkan matriks dengan bentuk baris eselon yang tereduksi(reduced row echelon form), sementara eliminasi Gauss hanya menghasilkan matriks sampai padabentuk baris eselon (row echelon form). Selain untuk menyelesaikan sistem persamaan linier, metode eliminasi Gauss-Jordan ini dapat menyelesaikan matriks.


Kelebihan dan Keuntungan :
Mengubah sistem persamaan linier yang ingin dihitung menjadi matriks augmentasi. merupakan variasi dari eliminasi gauss dengan kebutuhan dapat menyelesaikan matriks invers

Contoh Soal pengerjaan :
  • Aturan Cramer

Cramer adalah rumus yang dapat digunakan untuk menyelesaikan sistem persamaan linear. Metode ini menggunakan determinan suatu matriks dan matriks lain yang diperoleh dengan mengganti salah satu kolom dengan vektor yang terdiri dari angka disebelah kanan persamaannya.

Contoh Pengerjaan Soal :


  • Invers Matriks


Jika A dan B adalah matriks persegi dan berlaku A . B = B . A = 1, maka dikatakan matriks A dan B saling invers. B disebut invers dari A atau ditulis B = A-1. Matriks yang mempunyai invers disebut invertible atau matriks non singular. Sedangkan matriks yang tidak mempunyai invers disebut matriks singulara



Contoh Pengerjaan Soal:



  • Eliminasi Gauss

Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana. Metode Eliminasi Gauss adalah salah satu cara yang paling awal dan banyak digunakan dalam penyelesaian sistem persamaan linier



Comments

Popular posts from this blog

Sistem Persamaan Linier

Pada bagian ini akan dijelaskan tentang sistem persamaan linear (SPL) dan cara menentukan solusinya.  SPL banyak digunakan untuk memodelkan beberapa masalah real, misalnya: masalah rangkaian listrik, jaringan komputer, model ekonomi, dan lain-lain. Secara intuitif, persamaan linear adalah persamaan dimana peubahnya tidak memuat eksponensial, trigonometri (seperti sin, cos, dll.),  perkalian, pembagian dengan peubah lain atau dirinya sendiri. Jadi, sistem persamaan linear merupakan sekumpulan pesamaan linear yang memuat sejumlah hingga peubah bebas yang saling terkait. Bentuk umum sistem persamaan linear : Sistem persamaan linear di atas dapat ditulis dengan perkalian matriks, yaitu : Contoh : Tuliskan sistem persamaan linear berikut dalam bentuk perkalian matriks Solusi Sistem Persamaan Linear Misalkan, disubstitusikan pada sistem persamaan linear diatas, sehingga dan sistem persamaan linear tersebut bernilai benar, maka S dinamakan solusi bagi sistem p